International Journal of Theoretical Physics, Vol. 38, No. 10, 1999

Quantum Group Structure of Lie Superalgebra
osp(1/2)

A. Hegazi' and M. Mansour'
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We quantize the enveloping Lie superalgebra U(osp(1/2)) in the nonstandard
simple root system with two odd simple roots. The quantum supergroup structure
associated with the nonstandard simple root system is also given.

Quantum groups, quantum vector spaces, and the underlying notion
of deformations have substantially enriched the area of mathematics and
mathematical physics. The algebraic structure of the quantum group was
created by Jimbo and Drinfeld [1, 2]. The one-parameter quantum groups
are introduced as one-parameter deformations of the universal enveloping
algebra U(L) of an algebra L leading to a noncommutative and noncocommu-
tative Hopf algebra U,(L), namely the quantum group, Quantum groups can
also be considered as nontrivial generalizations of ordinary Lie groups. If L
is a Lie algebra, we deal with quantum groups, and if L is a Lie superalgebra,
we deal with quantum supergroups [3—6].

Let us consider the Lie superalgebra osp(1/2) whose even part is the
Lie algebra s/(2) with generators J3, J+; we call them isospin. The odd
generators V+ are s/(2) spinors with the following commutation relations:

[J3, J+] = *+Je, [Js, Vi) = —Vz
s, Va] = £12Vs,  [Va, Vi] = +Ja
[J+, J-] = 2J5, Vi, V] = J3
[Jx, V3] =0

We will work over a field K with char(K) = 0; we assume that

' Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt;
e-mail: sinfac@mum.mans.eun.eg.

2695

0020-7748/99/1000-269 5816.00/0 © 1999 Plenum Publishing Corporation



2696 Hegazi and Mansour

Vi = flg)Js
Vi = g(g)J-
[J3, V] = +1/2V+

where f(¢q) and g(q) are functions of ¢, and ¢ € K* is generic. In a direct
way we can prove that our assumptions are consistent with the commutation
relations of the Lie superalgebra osp(1/2), that is,

[J3, J+] = Js, [J3, J-] = —J-
Consider also the assumption
Ve, V- = F(J3)

where F(J3) is an arbitrary function of Jz. In this case we deduce that

1
LV == - 1/2) - + 1
[J+, V-] e {F(J3 ) — F(J3)}V- (1
[J-, Vi = 1L (F(J3 + 1/2) — F(J3)}V- (2)
g(q)
1
Jo, J] =" F(J; — 1/2) — F(J)}V.V-
[ ] A2 HF(J3 ) (J3)}
+ {(F(J3) — F(J3 + 112)\V_V4) (3)

Definition 1. We define the following three types of ¢g-number:

x/2 —x/2

g _ _—q

q—4q
x/2 + —x/2

[x]+ = q1/2 + q

with [x] + [x] = [x]¢, [X]y = [x]¢!, and [x];, > xas ¢ —> 1.

If we choose F(J3) = [J3]4, then we obtain
—1
W Vo] =7 [1/2][2J5 — 112)+V+ 4
[J+, V-] f(q)[/][fs 1214V 4)
[J-, V4] = L [1/2][2J5 + 1/2]+V - ®)

g(q)
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1
Ji, J ]| = —[1/2][2J3 + 1/2]+[J5],
[+, J-] f(q)g(q){ [1/2]12J5 J+J3lg
+ (¢ = ¢ "V (6)

As ¢ tends to 1, Eq. (4) becomes

[J+, V—] = % Vs, but [J+, V—] = =V
This implies that f{1) = 1/2. Also Eq. (5) becomes
1
[J-, V4] = 2_(1) V-, but [J-, Vi = —V- then g(1) = —1/2
We can choose f(¢q) and g(g) as follows:
1 _ —1
fla) = g2+ g g(q) _qllz + g7

or any other form such that f{q) —>1/2as¢q —>1 and g(¢q) = —1/2asq —> 1.
We get the following g-deformed osp(1/2) superalgebra:

Ve, V-t = I3y (7)
[J3, J+] = £J+ (8)
[J3, Vi] = ®1/2V+ ©)
[J=, V<] =0 (10)
Ve, V] = £Jx (11)
[Ju, V-] = =(¢" + ¢ "D)[12]1205 — 112 V% (12)
[J-, Vil = —(¢"* + ¢7"D[112][2J5 + 1/2],V- (13)
e, -] = =(¢" + ¢7"™) {(=[112)2)5 + 112}4J3],

+ (" = "V (14)

Define the comultiplication A, the counit g, and the antipode s for
U,(osp(1/2)) as follows:

Ag™") = ¢* X ¢ (15)
AL =73 X1 + 1K J; (16)
AJ) =J: RgB + ¢ X Js (17)

AVz) = Ve RgB + g PRV (18)
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e(Jx) =€V =¢(3) =0 (19)
elg™") =1 (20)
s(J1) = —q '+ 21
s(Ve) = —q* 'V (22)
s(J3) = —Js (23)
s(g™P) = ¢™" (24)

Theorem 2. The g-deformed Lie superalgebra U,(osp(1/2)) for ‘q‘ =1
under the comultiplication A, the counit €, and the antipode S defined by
(15)—(24) is a noncommutative and noncocommutative Hopf superalgebra,
subject to the following constraints:

+J3 FJ3 — 1

q9 49
qJSJi q*J:{ — qilji
qJ3Viq*13 — qlei

Proof. From the definition one can see that the Hopf superalgebra is
associative, noncommutative, and noncommutative. First, it is easy to see
the coassociativity of A [i.e., (1 ® A) © A = (A X 1) - A] and that the counit
€ is an algebraic homomorphism [i.e., &(ab) = €(a)e(b); a, b € Uy(osp(1/
2))] with the counit property (/X g) A = (¢ ®1) A =1

Now we will prove that A is an algebraic homomorphism, i.e., A pre-
serves the relations (11)—(13).

Thus,

12 _
AV = i
-1

= g R ) (4 R g+ R

(g — ¢ Wq)

+ ¢ (g PR gV R gB + R V)

-2 _

T 0)
+ q”zq*“VJ, X1+ qml X qu3V+}

(g V. + q”zq*“VJf}

{qJ3V+®1 + 1 ®qJSV+

_ -2 _

(g — ¢ WMq)
+ 1 R (¢ Ve + ¢"q7 Vi)

gV + ¢"q7V) R 1



Quantum Group Structure of Lie Superalgebra osp(1/2) 2699

=[J, V-] X1+ 1 X[, V] (1)

Also,
Ao, AV = [ R g+ ¢ BRI, VR g+ ¢ B R 1]
= XRqgBV-RgP) + [J R g" PRV
+ PRI, V-R gD + [ RI, g RV]
but
[J+ Xg" g PRV = (g R gV = (77 X V_g”)
= (99 I R qV-q") = (¢ R V_g") =0

Similarly
lq 7RI, V-X g =0
[Je R g7, V- R " = V- R gD — VI R ¢>

=LV- - V) X1
=[J, VX1

Similarly,

(g PRI, g PRV =1X [, V]
Then

AT, AV =[Je, VIR 1 + 1 X[Js, J] (ii)

From (i) and (ii) we get that A([J+, V-]) = [AJ+, AV-]. In the same way we
can prove that A is an algebraic homomorphism for the other relations, and
U,(osp(1/2)) is bi-superalgebra.

It remains to prove the equations of the antipode s. The antipode s is a
z>-graded vector space homomorphism:

s Ug(osp(1/2)) — Uy(osp(1/2))

satisfies M - (IXs) A =M (s® 1) A=u € Mis the multiplication
in Uy(osp(1/2)) and u is the unit u: K —> Uy(osp(1/2)).
The antipode s can be extended to be an antialgebra, i.e.,

stab) = (= 1)Ps(b)s(a)

for any a, b € U,(osp(1/2)), where ‘a‘ is the grade of the homogeneous
element @ such that it satisfies the following:

1) s u=u
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(i)e-s =¢.

(iii) T~ (s m A = A - s, where T is the twisting map defined by
T(a ®b) = (-1)"p X a.

(iv) & = I

It is clear that s satisfies (i) and (ii). For (iii) we will check the relation
for the elements ¢/

T (s A@™") =T (X)X g™
=T(q™* X g™ = (¢ R ¢™>)
= Ag™) = Asta™) = A s(4™")
Similarly for the elements J+ and V«. Let us now prove that

S(Js, V=) = [+, V-]

Thus,
2 R 1 J 12 1 J
_ q _ _ _ _
s (e, V) = G —a) {=q Vig P —q " q Vig”}
B | J 12, J
- —4q -1 . -
= L Slg Ve + g gV
g —q™h ' '
P 1 J 12 -1 J
_ —qg -1 - _ _
T Hag —gh T4 T ea T
P J 12 —J
- —qg -1 _
= T AaTVe g g YV
fog—ghH" T '
= [+, V-]
We can of course prove this property for other elements of the superalgebra
U, (osp(1/2)).

Now we will prove that the antipode s obeys
M (IXRs) " A=M RN " A=u ¢
Thus,

M (IXs) AJs) =M (IXRs)(J: X g+ ¢ B X I
=MJ: R g™ - ¢ g R Js)
=Jsq " =g
=q" g —q"'q7IL =0

M (s AJs) =M (sRDNJ: X g™+ ¢RI
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= M(—¢g*'Js X g + ¢ X Js)
— _qil JquS + qJ3Ji
— _qil]iqlg + qiljiqj3 =90

Similarly for the other elements. Therefore U,(osp(1/2)) is a noncommutative,
noncocommutative Hopf superalgebra, that is, U,(osp(1/2)) is a quantum
supergroup and the proof is completed.
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